ФОРМИРОВАНИЕ ЭТАЛОННЫХ ВОЛНОВЫХ ФРОНТОВ С ИСПОЛЬЗОВАНИЕМ ДИФРАКЦИОННЫХ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ

Введение

Традиционно расчет оптических элементов формирователей волнового фронта - проводился методами цифровой голографии или методами лучевой оптики[1]. Однако, оптический элемент, созданный голографическим способом, работает в некотором порядке дифракции, что приводит к низкой энергетической эффективности. Лучевой же подход не учитывает эффекта дифракции света в свободном пространстве, что приводит к искаженному формированию требуемого распределения фазы. В данной работе рассматривается итеративный алгоритм для расчета формирователей волновых фронтов, работающий в рамках дифракционной оптики, и, следовательно, свободный от перечисленных недостатков. Этот алгоритм является модификацией известного алгоритма Герчберга-Секстона (ГС), использовавшегося для расчета дифракционных элементов, формирующих заданное распределение интенсивности, - киноформов [2-4]. Результаты численных экспериментов подтвердили эффективность предложенного метода.

Обсуждается, также, модификация алгоритма ГС для расчета амплитудных линз. Приведенные численные результаты демонстрируют хорошую работоспособность таких оптических элементов.

Алгоритм расчета фазового ДОЭ

Если плоскость наблюдения (ξ, η) расположена в зоне дифракции Френеля, то комплексные амплитуды света в плоскости оптического элемента f(x, y) и в плоскости наблюдения $F(\xi, \eta)$ связаны преобразованием Френеля:

$$F(\xi,\eta) = \frac{k}{z} \iint_{\Omega} f(x,y) H(x-\xi,y-\eta) dx dy, \qquad (1)$$

где

$$H(x, y) = \exp\left[\frac{ik}{2z}(\chi^2 + \gamma^2)\right]$$

- функция оптического отклика свободного пространства, $k=2\pi/\lambda$ - волновое число света с длиной волны λ , z - расстояние между плоскостями, Ω форма апертуры оптического элемента.

Для расчета фазового формирователя волнового фронта необходимо решить методом последовательных приближений нелинейное интегральное уравнение скалярной дифракции света:

$$\Psi_{0}(\xi,\eta) = \arg \left\{ \iint_{\Omega} A(x,y) e^{i\varphi_{0}(x,y)} \times \\ \times H(x-\xi,y-\eta) dx dy \right\}$$
(2)

где $\psi_0(\xi,\eta)$ - требуемое распределение фазы в плоскости, находящейся на расстоянии *z* от элемента, A(x,y) - амплитуда освещающего пучка (для плоской волны A(x,y)=1), $\varphi_0(x,y)$ - искомая фаза.

Алгоритм решения уравнения (2) следующий [5]. Начальное приближение искомой фазы $\mathcal{O}_{0}(x, y)$

выбирается случайным. От функции $A(x, y)e^{i\varphi_0^{(x,y)}}$ вычисляется преобразование Френеля. Полученная функция $F_n(\xi, \eta)$, где *n* - номер итерации, заменяется на функцию $F'_n(\xi, \eta)$ по правилу:

$$F_{n}'(\xi,\eta) = \left| F_{n}(\xi,\eta) \right| e^{i\psi_{0}(\xi,\eta)}$$
(3)

От функции $F'_n(\xi,\eta)$ вычисляется обратное преобразование Френеля и полученная функция $f_n(x,y)$ в плоскости элемента заменяется на функ-

цию $f'_{n}(x, y)$ по правилу:

$$f_n'(x,y) = \begin{cases} A(x,y) \frac{f_n(x,y)}{|f_n(x,y)|}, (x,y) \in \Omega \\ 0, (x,y) \notin \Omega \end{cases}$$
(4)

Сходимость этого процесса контролируется по среднеквадратичному отклонению:

$$\delta_{\varphi} = \left[\frac{\int_{-\infty}^{\infty} \int \left[\psi_{0}\left(\xi,\eta\right) - \psi_{n}\left(\xi,\eta\right)\right]^{2} d\xi d\eta}{\int_{-\infty}^{\infty} \int \left[\psi_{0}\left(\xi,\eta\right)\right]^{2} d\xi d\eta}\right]^{1/2}$$

 ψ_0 и ψ_n - заданная и рассчитанная на *n*-й итерации фазы светового поля на расстоянии *z*.

Результаты численного эксперимента

Алгоритм (3)-(4) использовался для расчета фазовых оптических элементов, формирующих заданные распределения фазы полиномиального типа на некотором расстоянии. Были выбраны следующие параметры расчета: число отсчетов 128х128, радиус круглой диафрагмы Ω равен 0.3мм, дискретность по переменным (*x*,*y*) и (ξ , η) равна 0.01*mm*, $k = 10^4 mm^{-1}$, $z_0 = 20mm$ - расстояние до плоскости наблюдения. Амплитуда пучка, освещающего элемент, была гауссовой:

$$\mathcal{A}_{0}(x, y) = \exp\left[-\frac{x^{2}+y^{2}}{w^{2}}\right]$$

Количество итераций равно 10. Дальнейшее увеличение числа итераций не приводило к заметному изменению результатов.

На Рис.1 показаны результаты расчета для случая формирования волнового фронта следующего вида:

На рис. 1 показаны: фаза $\varphi(x,y)$ оптического элемента (а), ее центральные сечения по осям x и y; и фаза, сформированная на расстоянии z_0 (б), ее центральные сечения по осям ξ и η (сплошная линия на рис.1б - рассчитанная фаза, пунктирная линия - заданная фаза (5)). Отличие рассчитанной фазы (рис.1б) от заданной составило 0,1%.

Рис. 1. Формирование волнового фронта: a) - распределение фазы на элементе, освещаемом гауссовым пучком; б) - распределение фазы на расстоянии z₀.

Затем дополнительно была введена на каждом шаге операция квантования функции распределения фазы по *M* уровням значений фазы: Затем дополнительно была введена на каждом шаге операция квантования функции распределения фазы по *M* уровням значений фазы:

$$\varphi_{k}(x,y) = \frac{2\pi m}{M},$$

$$\frac{2\pi m}{M} \le \varphi_{k} \le \frac{2\pi (m+1)}{M},$$

$$k = \overline{1, N}, \ m = \overline{0, M-1},$$
(6)

где *k* - номер итерации.

На рис. 2 и рис. 3 приведены результаты квантования для предыдущего случая формирования волнового фронта $\psi_0(\xi,\eta)$ по 10 и 5 уровням фазы соответственно.

При этом отличие рассчитанной фазы от заданной составило в среднем 7,7% для рис.2 и 15,7% для рис.3.

Рис. 2. Формирование волнового фронта с квантованием фазы по 10 уровням. а)- распределение фазы на элементе, освещаемом гауссовым пучком; б)-распределение фазы на расстоянии z₀

Приведенные результаты говорят о том, что, применяя предложенный алгоритм, за небольшое число итераций удается рассчитать фазовые оптические элементы, которые на некотором расстоянии формируют волновые фронты типа

$$\psi(\xi,\eta) = \pm \alpha \left(\xi^k \pm \eta^l\right),$$

отличающиеся от заданных не более, чем на 7-8% при не менее, чем 10-ти уровнях квантования.

Амплитудные линзы

Рассмотрим еще один вариант модификации алгоритма ГС, позволяющий решить задачу расчета амплитудных линз. В данном случае методом последовательных приближений решается интегральное уравнение вида:

Рис. 3. Формирование волнового фронта с квантованием фазы по 5-ти уровням. а)-распределение фазы на элементе, освещаемом гауссовым пучком; б)-распределение фазы на расстоянии z₀

Решение уравнения (6) ищется из условия минимизации функционала:

$$M = \int \int_{-\infty}^{\infty} W(\xi,\eta) \Big[\sqrt{I_0} - \big| F(\xi,\eta) \big| \Big]^2 d\xi d\eta + + \alpha^2 \int \int_{-\infty}^{\infty} \big| F(\xi,\eta) \big|^2 d\xi d\eta$$
(7)

где $I_0 = I(\xi_0, \eta_0)$ - пиковое значение интенсивности в точке (ξ_0, η_0) , $W(\xi, \eta)$ - весовая апертурная функция:

$$W(\xi,\eta) = \begin{cases} 1, (\xi,\eta) \in S \\ 0, (\xi,\eta) \notin S \end{cases},$$

S - малая область вблизи точки, α - постоянная, регулирующая уровень энергии рассеянного света. Первое слагаемое в (7) показывает отклонение рассчитанного поля от пика интенсивности в точке (ξ_0, η_0) . Максимальная дифракционная эффективность достигается при условии примерного равенства энергии шума и сигнала:

$$I_0 \approx \alpha^2 \int \int_{-\infty}^{\infty} \left| F\left(\xi, \eta\right) \right|^2 d\xi d\eta \tag{8}$$

Алгоритм минимизации функционала (7) аналогичен алгоритму ГС (3)-(4), но вместо замены (3) используется замена:

$$F_{n}^{\odot}(\xi,\eta) = \left(\sqrt{I_{0}}W(\xi,\eta) + \alpha \left|F(\xi,\eta)\right|\right) \frac{F(\xi,\eta)}{\left|F(\xi,\eta)\right|}, (9)$$

а вместо замены (4) используется замена

$$f'(x,y) = \begin{cases} \left| f_n(x,y) \right|, \ (x,y) \in \Omega \\ 0, \ (x,y) \notin \Omega \end{cases}$$
(10)

На рисунке 4 представлены результаты численного эксперимента, моделировавшего работу амплитудной линзы, рассчитанной при помощи алгоритма (9)-(10). Рис. 4(а) демонстрирует амплитудный элемент, освещавшийся плоским пучком и его центральное сечение, а рис. 4(б) - распределение интенсивности на расстоянии $z_0=160mm$. Диаметр линзы равен 3mm, волновое число $k = 10^4 mm^{-1}$. Число итераций равно 15. Дифракционная эффективность полученной линзы составила 18,2%.

где $I(\xi,\eta)$ - требуемое распределение интенсивно-

Рис. 4. Расчет амплитудной линзы: а) рассчитанный элемент и его центральное сечение; б)распределение интенсивности на расстоянии Z₀.

На рисунке 5 приведены результаты работы амплитудной зонной пластинки Френеля с параметрами, аналогичными параметрам рассчитанной линзы. Рис. 5(а) демонстрирует распределение амплитудных зон на пластинке, а рис. 5(б) - распределение интенсивности светового поля на расстоянии z_0 и его центральное сечение. Дифракционная эффективность зонной пластинки составила 20,9%, но ширина центрального пика интенсивности была несколько больше, чем для амплитудного элемента, рассчитанного итеративным методом.

Рис. 5. Амплитудная зонная пластинка: а) - амплитудное пропускание зонной пластинки; б) распределение интенсивности на расстоянии z₀ и его центральное сечение.

Заключение

Таким образом, в данной работе были представлены итеративные алгоритмы расчета дифракционных оптических элементов, формирующих заданные распределения фазы когерентного светового поля, и амплитудных линз, основанные на модификациях алгоритма Герчберга - Секстона. Приведены численные результаты, демонстрирующие возможность успешного применения предложенных алгоритмов.

Литература

1. Голуб М.А., Живописцев Е.С., Карпеев С.В., Прохоров А.М., Сисакян И.И., Сойфер В.А. Получение асферических волновых фронтов при помощи голограмм. //Доклады АН СССР, 253 (1980) 1104-1108.

2. Lesem L.B., Hirsh P.M., Jordan J.A. The kinoform: A new wave front reconstruction device. //IBM J.Res.Develop., 13 (1969), 150-155.

3. Gerchberg R.W., Saxton W.O. A practical algorithm for the determination of phase from image and diffraction plane pictures. //.Optik 35 (1972) 237-246

4. Kotlyar V.V., Nikolsky I.N., Soifer V.A. Adaptive iterative algorithm for focusator's synthesis. // Optik, 88 (1991) 17-19.

5. Kotlyar V.V., Philippov S.V. Phase diffractive elements forming pregiven phase distribution. //Opt. & Lasers Tech., 27 (1995) 229-233.